Phonon in solids I
Solids -in eqiulibriuon atoms only vibrate slightly around equilibrium positions

$$
\left\langle n(\vec{r}) n\left(\vec{r}^{\prime}\right)\right\rangle=C(\vec{r}, \vec{r})
$$

In liquids and gases $C\left(\vec{r}, \vec{r}^{\prime}\right)=C\left(\vec{r}-\vec{r}^{\prime}\right)$ $C\left(\vec{F}-\vec{r}^{\prime}\right)$

In solid state there is long-range oder

solid in thermal equilibrium must be crystalline. Atoms tend to minimise their n ...s.... Tomserature $T<$ interaction
crystalline. grans win w....... potential energy. Temperature $T<$ Interaction
energy.
Smorphons solids and glasses - not in equilibrium.

Ir addition to the position g of the aton, there may be other degrees of freedom (spins, dipole moments)
Vibrations in a $1 D$ crystal

$$
H=\sum_{i}\left[\frac{p_{i}^{2}}{2 m}+K\left(x_{i}-x_{i+1}\right)^{2}\right]
$$

The Hamilton's equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{i}=\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i}=-\frac{\partial H}{\partial x_{i}}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{x}_{i}=\frac{p_{i}}{m} \\
\dot{p}_{i}=-K\left(x_{i}-x_{i+1}\right)-K\left(x_{i}-x_{i-1}\right)
\end{array}\right. \\
& m \ddot{x}_{i}=K\left(x_{i+1}+x_{i-1}-2 x_{i}\right) \quad \ldots \quad v=A e^{i(k n a-\omega t)}
\end{aligned}
$$

$$
m \ddot{x}_{i}=K\left(x_{i+1}+x_{i-1}-2 x_{i}\right)
$$

hook for the solution in the Form $x_{n}=A e^{i}$

$$
\begin{aligned}
& -m \omega^{2}=K\left(e^{i k a}+e^{-i k a}-2\right) \\
& \omega^{2}=\frac{2 K}{m}(1-\cos (k a))=\frac{4 k}{m} \sin ^{2} \frac{k a}{2}
\end{aligned}
$$

ot small k

$$
w \approx a \sqrt{\frac{k}{m}} k=s k
$$

$$
w \approx a \sqrt{\frac{K}{m}} k
$$

$S=a \sqrt{\frac{k}{m}}$ - speed of sound
Note: the mavevector is defined up to $\frac{2 \pi}{a}$. Indeed, because a wave has the form $X_{k} \propto e^{i k n a}$, adding $\frac{2 \pi}{a}$ to the mavevector k x_{k} does not 'change anything

$k \longleftrightarrow k+\frac{2 \pi}{a}$-indistinguishable mavevectors
Therefore, it is enough to consider wavevectors ., $\ldots \ldots$ interval of k of the width $\frac{2 \pi}{a}$

Therefore, it is enough to consear wave. contined to any interval of k of the width $\frac{2 \pi}{a}$

$$
\left(-\frac{\pi}{a} ; \frac{\pi}{a}\right) \text { - } 1 \text {-st Brillouin zone }
$$

In reality there are several atoms in the elementary cell

$$
x_{i-1}^{y_{i-1}} x_{i}^{x_{i}} y_{i} x_{i+1}^{x_{i+1}} y_{m}^{y_{i+1}} .
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
m \ddot{x}_{i}=-K\left(x_{i}-y_{i}\right)-K\left(x_{i}-y_{i-1}\right) \\
M \ddot{y}_{i}=-K\left(y_{i}-x_{i}\right)-K\left(y_{i}-x_{i+1}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
m \ddot{x}_{i}=K\left(y_{i}+y_{i-1}-2 x_{i}\right) \\
M \ddot{y}_{i}=K\left(x_{i}+x_{i+1}-2 y_{i}\right)
\end{array}\right.
\end{aligned}
$$

Look for the solution in the form

$$
\begin{aligned}
& \text { hook tor the solution }, y_{n}=y_{k} e^{i\left[k a\left(n+\frac{1}{2}\right)-\omega t\right]} \\
& x_{n}=x_{k} e^{i(k n a-\omega t)} \\
& \left\{\begin{array}{l}
m \omega^{2} x_{k}=2 K x_{k}-2 K \cos \frac{k a}{2} \cdot y_{k} \\
M \omega^{2} y_{k}=2 K y_{k}-2 K \cos \frac{k a}{2} \cdot x_{k}
\end{array}\right.
\end{aligned}
$$

2 Equations for 2 variables x_{k} and $y k$ - s solution

2 Equations for 2 varraun ${ }^{2} \cdot$
$x_{k}=y_{k}=0$ is a solution
Non-trivial solutions exist it et $=0$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
2 K-m \omega^{2} & -2 K \cos \frac{k a}{2} \\
-2 K \cos \frac{K a}{2} & 2 K-M \omega^{2}
\end{array}\right)=0 \\
& M m \omega^{4}-2 \omega^{2} K(M+m)+4 K^{2}-4 K^{2} \cos ^{2} \frac{k a}{2}=0
\end{aligned}
$$

Introduce the reduced mass $\mu=\frac{\mu m}{\mu+m}$

$$
\begin{aligned}
& \omega^{4}-\frac{2 K}{\mu} \omega^{2}+\frac{4 K^{2}}{m M} \sin ^{2} \frac{k a}{2}=0 \\
& \omega_{ \pm}^{2}(k)=\frac{K}{\mu}\left(1 \pm \sqrt{1-\frac{4 \mu^{2}}{m M} \sin ^{2} \frac{k a}{2}}\right)
\end{aligned}
$$

2 branches !!
In the limit $k \rightarrow 0$

$$
\begin{aligned}
& \omega_{-}^{2}(k)=\frac{2 K \mu}{m M}\left(\frac{k a}{2}\right)^{2} \\
& \omega_{-}(k)=s k \quad \text { with } \quad s=\frac{1}{2}\left(\frac{2 K}{M+m}\right)^{\frac{1}{2}}
\end{aligned}
$$

Find the gap.

$$
\begin{aligned}
& \text { Find the gap. } \\
& 1-\frac{4 \mu^{2}}{m M}=1-\frac{4 M m}{(M+m)^{2}}=\frac{(M-m)^{2}}{(M+m)^{2}}
\end{aligned}
$$

The maximum of the accoustic branch:

$$
\omega_{-}^{2}\left(\frac{\mu}{a}\right)=\frac{K}{\mu}\left(1-\frac{M-m}{M+m}\right)=\frac{2 K}{M}
$$

The minimum of the optical branch:

$$
\omega_{+}\left(\frac{\pi}{a}\right)=\frac{K}{\mu}\left(1+\frac{M-m}{M+m}\right)=\frac{2 K}{m}
$$

The dispersion of the optical branch at small k :

$$
\omega_{+}(k) \approx \sqrt{\frac{2 k}{m}}\left(1+\frac{m}{2 M} \cos ^{2} \frac{k a}{2}+O\left(\frac{m^{2}}{M^{2}}\right)\right)
$$

In the limit $m \ll M$ the dispersion is flat; this corresponds 5 the vibrations of the light atoms between the heavy ones.

